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Decoding
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Abstract—Recent work has demonstrated that using a carefully
designed sensing matrix rather than a random one, can improve
the performance of compressed sensing. In particular, a well-
designed sensing matrix can reduce the coherence between the
atoms of the equivalent dictionary, and as a consequence, reduce
the reconstruction error. In some applications, the signals of
interest can be well approximated by a union of a small number
of subspaces (e.g., face recognition and motion segmentation).
This implies the existence of a dictionary which leads toblock-
sparse representations. In this work, we propose a framework
for sensing matrix design that improves the ability of block-
sparse approximation techniques to reconstruct and classify
signals. This method is based on minimizing a weighted sum
of the inter-block coherence and the sub-block coherence ofthe
equivalent dictionary. Our experiments show that the proposed
algorithm significantly improves signal recovery and classification
ability of the Block-OMP algorithm compared to sensing matrix
optimization methods that do not employ block structure.

I. I NTRODUCTION

The framework of compressed sensing aims at recovering
an unknown vectorx ∈ RN from an under-determined
system of linear equationsy = Ax, where A ∈ RM×N

is a sensing matrix, andy ∈ RM is an observation vector
with M < N . Since the system is under-determined,x can
not be recovered without additional information. In [1], [2]
it was shown that whenx is known to have a sufficiently
sparse representation, and whenA is randomly generated,
x can be recovered uniquely with high probability from the
measurementsy. More specifically, the assumption is thatx
can be represented asx = Dθ for some orthogonal dictionary
D ∈ RN×N , whereθ ∈ RN is sufficiently sparse. The vector
x can then be recovered regardless ofD and irrespective
of the locations of the nonzero entries ofθ. This can be
achieved by approximating the sparsest representationθ using
methods such asBasis Pursuit(BP) [3], [1] andOrthogonal
Matching Pursuit(OMP) [4], [5]. In practice, overcomplete
dictionariesD ∈ RN×K with K ≥ N lead to improved sparse
representations and are better suited for most applications.
Therefore, we treat the more general case of overcomplete
dictionaries in this paper.

A simple way to characterize the recovery ability of sparse
approximation algorithms was presented in [4], using the
coherence between the columns of the equivalent dictionary
E = AD. When the coherence is sufficiently low, OMP and
BP are guaranteed to recover the sparse vectorθ. Accordingly,
recent work [6], [7], [8] has demonstrated that designing a
sensing matrix such that the coherence ofE is low improves
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the ability to recoverθ. The proposed methods yield good
results for general sparse vectors.

In some applications, however, the representations have a
unique sparsity structure that can be exploited. Our interest
is in the case of signals that are drawn from a union of a
small number of subspaces [9], [10], [11], [12]. This occurs
naturally, for example, in face recognition [13], [14], motion
segmentation [15], multi-band signals [16], [17], [18], mea-
surements of gene expression levels [19], and more. For such
signals, sorting the dictionary atoms according to the underly-
ing subspaces leads to sparse representations which exhibit a
block-sparse structure, i.e., the nonzero coefficients inθ occur
in clusters of varying sizes. Several methods, such asBlock-
BP (BBP) [12], [20], [21] andBlock-OMP(BOMP) [22], [23]
have been proposed to take advantage of this block structure
in recovering the block-sparse representationsθ. Bounds on
the recovery performance were presented in [12] based on
the block restricted isometry property (RIP), and in [22] using
appropriate coherence measures. In particular, it was shown in
[22] that under conditions on theinter-block coherence(i.e.,
the maximal coherence between two blocks) and thesub-block
coherence(i.e., the maximal coherence between two atoms in
the same block) of the equivalent dictionaryE, Block-OMP
is guaranteed to recover the block-sparse vectorθ.

In this paper we propose a method for designing a sensing
matrix, assuming that a block-sparsifying dictionary is pro-
vided. A method for learning a block-sparsifying dictionary
is developed in [24]. Our approach improves the recovery
ability of block-sparse approximation algorithms by targeting
the Gram matrix of the equivalent dictionary, an approach
similar in spirit to that of [7], [8]. While [7] and [8] targeted
minimization of the coherence between atoms, our method,
which will be referred to asWeighted Coherence Minimization
(WCM), aims at reducing a weighted sum of the inter-block
coherence and the sub-block coherence.

It turns out that the weighted coherence objective is hard to
minimize directly. To derive an efficient algorithm, we use the
bound-optimization method, and replace our objective withan
easier to minimize surrogate function that is updated in each
optimization step [25]. We develop a closed form solution for
minimizing the surrogate function in each step, and prove that
its iterative minimization is guaranteed to converge to a local
solution of the original problem.

Our experiments reveal that minimizing the sub-block co-
herence is more important than minimizing the inter-block
coherence. By giving more weight to minimizing the sub-block
coherence, the proposed algorithm yields sensing matricesthat
lead to equivalent dictionaries with nearly orthonormal blocks.
Simulations show that such sensing matrices significantly
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improve signal reconstruction and signal classification results
compared to previous approaches that do not employ block
structure.

We begin by reviewing previous work on sensing matrix
design in Section II. In Section III we introduce our definitions
of total inter-block coherence and total sub-block coherence.
We then present the objective for sensing matrix design, and
show that it can be considered as a direct extension of the
one used in [8] to the case of blocks. We present the WCM
algorithm for minimizing the proposed objective in SectionIV
and prove its convergence in Appendix A. We evaluate the
performance of the proposed algorithm and compare it to
previous work in Section V.

Throughout the paper, we denote vectors by lowercase
letters, e.g.,x, and matrices by uppercase letters, e.g.,A. A′

is the transpose ofA. The jth column of the matrixA is Aj ,
and theith row isAi. The entry ofA in the row with indexi
and the column with indexj is Ai

j . We define the Frobenius

norm by ‖A‖F ≡
√

∑

j ‖Aj‖22, and thelp-norm of a vector

x by ‖x‖p. The l0-norm‖x‖0 counts the number of non-zero
entries inx. We denote the identity matrix byI or Is when the
dimension is not clear from the context. The largest eigenvalue
of the positive-semidefinite matrixB′B is written asλmax(B).

II. PRIOR WORK ON SENSING MATRIX DESIGN

The goal of sensing matrix design is to construct a sensing
matrix A ∈ RM×N with M < N that improves the recovery
ability for a given sparsifying dictionaryD ∈ RN×K with
K ≥ N . In other words,A is designed to improve the ability
of sparse approximation algorithms such as BP and OMP to
recover the sparsest representationθ from

y = ADθ = Eθ, (1)

where E is the equivalent dictionary. In this section we
briefly review the sensing matrix design method introduced by
Duarte-Carvajalino and Sapiro [8]. Their algorithm was shown
to provide significant improvement in reconstruction success.

The motivation to design sensing matrices stems from the
theoretical work of [4], where it was shown that BP and OMP
succeed in recoveringθ when the following condition holds:

‖θ‖0 ≤
1

2

(

1 +
1

µ

)

. (2)

Hereµ is the coherence defined by:

µ ≡ max
i6=j

|E′
iEj |

‖Ei‖2‖Ej‖2
. (3)

The smallerµ, the higher the bound on the sparsity ofθ.
SinceE is overcomplete, and as a consequence not orthogonal,
µ will always be strictly positive. Condition (2) is a worst-
case bound and does not reflect the average recovery ability
of sparse approximation methods. However, it does suggest
that recovery may be improved whenE is as orthogonal as
possible.

Motivated by these observations, Duarte-Carvajalino and
Sapiro [8] proposed designing a sensing matrixA by mini-

mizing ‖E′E − I‖2F . This problem can be written as:

min
A

‖E′E − I‖2F = min
A

‖D′A′AD − I‖2F . (4)

It is important to note that rather than minimizingµ, (4)
minimizes the sum of the squared inner products of all pairs
of atoms inE, referred to as the total coherenceµt:

µt =
∑

j,i6=j

(E′
iEj)

2. (5)

At the same time, solving (4) keeps the norms of the atoms
close to1.

While an approximate solution to (4) has already been
presented in [8], we provide an exact solution that will be of
use in the next sections. To solve (4), we rewrite its objective
using the well-known relation between the Frobenius norm
and the trace,‖C‖2F = tr(CC′):

‖E′E − IK‖2F =tr(E′EE′E − 2E′E + IK)

=tr(EE′EE′ − 2EE′ + IM ) + (K −M)

=‖EE′ − IM‖2F + (K −M)

=‖ADD′A′ − IM‖2F + (K −M). (6)

Since the first term in (6) is always positive, the objective of
(4) is lower bounded by‖E′E − I‖2F ≥ K −M .

From (6) it follows that minimizing (4) is equivalent to the
minimization of‖ADD′A′−IM‖2F . A solution to this problem
can be achieved in closed form as follows. LetUΛU ′ be the
eigenvalue decomposition ofDD′, and letΓM×N = AUΛ1/2.
Then, (4) is equivalent to:

min
A

‖ΓΓ′ − I‖2F . (7)

This problem is solved by choosingΓ to be any matrix with
orthonormal rows, such asΓ = [IM 0], leading toΓΓ′ = I.
The optimal sensing matrix is then given byA = ΓΛ−1/2U ′.
Here, and throughout the paper, we assume thatD has full row
rank, guaranteeing thatΛ is invertible. Note that the global
minimum of the objective in (4) equalsK −M . The benefits
of using such a sensing matrix were shown empirically in [8].

The same solution is obtained by setting the derivative of
(7) equal to zero:

∂‖ΓΓ′ − I‖2F
∂Γ

= 4(ΓΓ′Γ− Γ) = 0 (8)

It can be deduced from (8) that for stationary points, the
singular values ofΓ must be equal to either one or zero.
However, only when all theM singular values ofΓ equal one,
i.e.,Γ has full row rank, we have a local minimum (the other
stationary points being a local maximum and saddle points).
It is important to keep in mind that even though the objective
is not convex, every local minimum is a global minimum as
well.

III. SENSING MATRIX DESIGN FOR BLOCK-SPARSE

DECODING

The design of a sensing matrix according to [8] does not
take advantage of block structure in the sparse representations
of the data. In this section we formulate the problem of sensing
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matrix design for block-sparse decoding. We first introducethe
basic concepts of block-sparsity, and then present an objective
which can be seen as an extension of (4) to the case of block-
sparse decoding.

A. Block-sparse decoding

The framework of block-sparse decoding aims at recovering
an unknown vectorx ∈ RN from an under-determined system
of linear equationsy = Ax, whereA ∈ RM×N is a sensing
matrix, andy ∈ RM is an observation vector withM < N .
The difference with sparse recovery lies in the assumption
that x has a sufficiently block-sparse representationθ ∈ RN

with respect to some orthogonal block-sparsifying dictionary
D ∈ RN×N . The vectorx can then be recovered by approxi-
mating the block-sparsest representation corresponding to the
measurementsy using methods such as Block-BP (BBP) [12],
[20], [21] and Block-OMP (BOMP) [22], [23].

A block-sparsifying dictionaryD is a dictionary whose
atoms are sorted in blocks which enable block-sparse rep-
resentations for a set of signals. We can representD as a
concatenation ofB column-blocksD[j] of sizeN×sj , where
sj is the number of atoms belonging to thejth block:

D = [D[1] D[2] . . . D[B]].

Similarly, we view the representationθ as a concatenation of
B blocksθ[j] of lengthsj :

θ = [θ[1] θ[2] . . . θ[B]]′.

We say that a representationθ is k-block-sparse if its nonzero
values are concentrated ink blocks only. This is denoted by
‖θ‖2,0 ≤ k, where

‖θ‖2,0 =

B
∑

j=1

I(‖θ[j]‖2 > 0).

The indicator functionI(·) counts the number of blocks inθ
with nonzero Euclidean norm.

B. Problem definition

For a given block-sparsifying dictionaryD ∈ RN×K with
K ≥ N , we wish to design a sensing matrixA ∈ RM×N that
improves the recovery ability of block-sparse approximation
algorithms. Note that we allowD to be overcomplete.

A performance bound on the recovery success of block-
sparse signals has been developed in [22] for the case of a dic-
tionaryD with blocks of a fixed sizes (i.e., si = sj = s) and
an equivalent dictionaryE = AD with normalized columns.
The bound is a function of the Gram matrixG ∈ RK×K of the
equivalent dictionary, defined asE′E. The(i, j)th block ofG,
E[i]′E[j], is denoted byG[i, j] ∈ Rsi×sj . The(i, j)th block of
any otherK×K matrix will be denoted similarly. It was shown
in [22] that BBP and BOMP succeed in recovering the block
sparsest representationθ corresponding to the measurements
y = Eθ when the following condition holds:

‖θ‖2,0 <
1

2s

(

µ−1
B + s− (s− 1)

ν

µB

)

. (9)

Here
µB ≡ max

j,i6=j

1

s

√

λmax(G[i, j]′G[i, j])

is the inter-block coherenceand

ν ≡ max
j

max
n,m 6=n

|(G[j, j])mn |

is the sub-block coherence. The inter-block coherenceµB is
a generalization of the coherenceµ, and describes the global
properties of the equivalent dictionary. More specifically, µB

measures the cosine of the minimal angle between two blocks
in E. The sub-block coherenceν describes the local properties
of the dictionary, by measuring the cosine of the minimal angle
between two atoms in the same block inE. Note, that when
s = 1, (9) reduces to the bound in the sparse case (2). The
termµ−1

B in (9) suggests thatµB needs to be reduced in order
to loosen the bound. On the other hand, the term−(s− 1) ν

µB

implies that the ratio ν
µB

should be small. This leads to a
trade-off between minimizingµB and minimizingν to loosen
the bound, which is reflected in the sensing matrix design
objective presented later in this section.

Condition (9) is a worst case bound and does not represent
the average recovery ability of block-sparse approximation
methods. It does suggest, however, that in order to improve
the average recovery, all pairs of blocks inE should be as
orthogonal as possible and also all pairs of atoms within each
block should be as orthogonal as possible. Inspired by [8],
rather than minimizing the inter-block coherenceµB and the
sub-block coherenceν, we aim at minimizing thetotal inter-
block coherenceµt

B and thetotal sub-block coherenceνt of
the equivalent dictionaryE. We define the total inter-block
coherence as

µt
B =

B
∑

j=1

∑

i6=j

‖G[i, j]‖2F , (10)

and the total sub-block coherence by

νt =

B
∑

j=1

‖G[j, j]‖2F −

K
∑

m=1

(Gm
m)2, (11)

whereGm
m are the diagonal entries ofG. The total inter-block

coherenceµt
B equals the sum of the squared entries inG

belonging to different blocks (the green entries in Fig. 1).
Since this is the sum of Frobenius norms,µt

B also equals
the sum of the squared singular values of the cross-correlation
blocks inG. WhenE is normalized,µt

B is equivalent to the
sum of the squared cosines of all the principal angles between
all pairs of different blocks. The total sub-block coherence νt

measures the sum of the squared off-diagonal entries belonging
to the same block (the red entries in Fig. 1). WhenE is
normalized,νt equals the sum of the squared cosines of all
the angles between atoms within the same block. Note that
when the size of the blocks equals one, we getνt = 0.

Alternatively, one could define the total inter-block co-
herence as the sum of the squared spectral norms (i.e., the
largest singular values) of the cross-correlation blocks in G,
and the total sub-block coherence as the sum of the squared
maximal off-diagonal entries of the auto-correlation blocks in
G. These definitions are closer to the ones used in condition
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Fig. 1. A graphical depiction of the Gram matrixG of an equivalent
dictionaryE with 6 blocks of size3. The entries belonging to different blocks
are in green, the off-diagonal entries belonging to the sameblock are in red,
and the diagonal entries are in yellow.

(9). The WCM algorithm presented in the next section can be
slightly modified in order to minimize those measures as well.
However, besides the increased complexity of the algorithm,
the results appear to be inferior compared to minimizing the
definitions (10) and (11) ofµt

B andνt. This can be explained
by the fact that maximizing only the smallest principal angle
between pairs of different blocks inE and maximizing the
smallest angle between atoms within the same block, creates
a bulk of relatively high singular values and coherence values.
While this may improve the worst-case bound in (9), it does
not necessarily improve the average recovery ability of block-
sparse approximation methods.

When minimizing the total inter-block coherence and the
total sub-block coherence, we need to verify that the columns
of E are normalized, to avoid the tendency of columns with
small norm values to be underused. Rather than enforcing
normalization strongly, we penalize for columns with norms
that deviate from1 by defining thenormalization penaltyη:

η =

K
∑

m=1

(Gm
m − 1)2. (12)

This penaltyη measures the sum of the squared distances
between the diagonal entries inG (the yellow entries in Fig.
1) and1.

While [8] did not deal with the block-sparse case, it is
straightforward to see that solving (4) is equivalent to minimiz-
ing the sum of the normalization penalty, the total inter-block

coherence and the total sub-block coherence:

‖E′E − I‖2F =

B
∑

j=1

∑

i6=j

‖E[i]′E[j]‖2F +

B
∑

j=1

‖E[j]′E[j]− I‖2F

=
B
∑

j=1

∑

i6=j

‖G[i, j]‖2F +
B
∑

j=1

‖G[j, j]− I‖2F

=

B
∑

j=1

∑

i6=j

‖G[i, j]‖2F +

B
∑

j=1

‖G[j, j]‖2F

−

K
∑

m=1

(Gm
m)2 +

K
∑

m=1

(Gm
m − 1)2

=η + µt
B + νt.

We have shown in the previous section that the objective in
(4) is bounded below byK −M . Therefore,

η + µt
B + νt ≥ K −M. (13)

This bound implies a trade-off, and as a consequence, one
cannot minimizeη, µt

B and νt freely. Instead, we propose
designing a sensing matrix that minimizes the normalization
penalty and a weighted sum of the total inter-block coherence
and the total sub-block coherence:

A = argmin
A

1

2
η + (1 − α)µt

B + ανt, (14)

where 0 < α < 1 is a parameter controlling the weight
given to the total inter-block coherence and the total sub-block
coherence. Note that alternative objectives can be formulated.
For example, one could add an additional weighting parameter
to the normalization penalty term. While this would allow us
to better control the normalization of the atoms inE, we prefer
to deal with a single parameter only.

When α < 1
2 , more weight is given to minimizingµt

B,
and therefore solving (14) leads to lower total inter-block
coherence, which is made possible by aligning the atoms
within each block (Fig. 2(a)). On the other hand, choosing
α > 1

2 gives more weight to minimizingνt. In this case,
solving (14) leads to more orthonormal blocks inE at the
expense of higherµt

B (Fig. 2(c)). Finally, settingα = 1
2 in

(14) gives equal weights toµt
B, νt and η, and reduces it to

(4) (Fig. 2(b)). Therefore, the objective becomes independent
of the block structure, which makesα = 1

2 the correct
choice when the signals do not have an underlying block
structure. Choosing to ignore the block structure leads to the
same conclusion. When an underlying block structure exists,
we need to select a value forα. We do that via empirical
evaluation in Section V.

In the previous section we have shown that every local
minimum of (4), and therefore also of (14) withα = 1

2 , is
also a global minimum. Empirical observations reveal that
this is not the case whenα 6= 1

2 . This is demonstrated in
the histograms presented in Fig. 3(a) forα = 0.01 with a
square dictionary and in Fig. 4(b) forα = 0.99 with a highly
overcomplete dictionary. Since it is hard to develop a closed
form solution for (14), we present an iterative algorithm that
converges to a local solution of (14) in the following section.
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(a) (b)

(c)

Fig. 2. Examples of the absolute value of the Gram matrix of anequivalent
dictionary forα = 0.01 (a),α = 0.5 (b) andα = 0.99 (c), where the sensing
matrix of size12× 18 was found by solving (14) given a randomly selected
square dictionary composed of6 blocks of size3. The sub-block entries are
highlighted by red squares.
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Fig. 3. Histograms of the objective values obtained when solving (14) 100
times withα = 0.01 (a) andα = 0.99 (b), for a given randomly generated
square dictionary composed of6 blocks of size3. The sensing matrices of
size 12 × 18 are initialized as matrices with random entries. Note that the
distribution is insignificant in (b), indicating that in this specific case, every
local minimum is also a global minimum.
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Fig. 4. Histograms of the objective values obtained when solving (14)
100 times with α = 0.01 (a) andα = 0.99 (b), for a given randomly
generated overcomplete dictionary composed of24 blocks of size3. The
sensing matrices of size12 × 18 are initialized as matrices with random
entries.

IV. W EIGHTED COHERENCEM INIMIZATION

In this section, we present theWeighted Coherence Mini-
mization(WCM) algorithm for minimizing (14), based on the
bound-optimization method [25]. This algorithm substitutes
the original objective with an easier to minimize surrogate
objective that is updated in each optimization step. After
defining a surrogate function and showing it can be minimized
in closed form, we prove that its iterative minimization is
guaranteed to converge to a local solution of the original
problem.

A. The Weighted Coherence Minimization Algorithm

To obtain a surrogate function we rewrite the objective of
(14), which we denote byf(G), as a function of the Gram
matrix of the equivalent dictionaryG = D′A′AD:

f(G) ≡
1

2
η(G) + (1− α)µt

B(G) + ανt(G)

=
1

2
‖uη(G)‖2F + (1− α)‖uµ(G)‖2F + α‖uν(G)‖2F ,

where the matrix operatorsuµ, uν anduη are defined as:

uη(G)[i, j]mn =

{

G[i, j]mn − 1, i = j,m = n;
0, else

,

uµ(G)[i, j]mn =

{

G[i, j]mn , i 6= j;
0, else

,

uν(G)[i, j]mn =

{

G[i, j]mn , i = j,m 6= n;
0, else

,

with G[i, j]mn denoting the(m,n)th entry of G[i, j]. This
equation follows directly from the definitions ofη, µt

B and
νt. We can now write:

f(G) =
1

2
‖G− hη(G)‖2F + (1− α)‖G− hµ(G)‖2F

+α‖G− hν(G)‖2F , (15)

where the matrix operatorshµ, hν andhη are defined as:

hη(G)[i, j]mn =

{

1, i = j,m = n;
G[i, j]mn , else

,

hµ(G)[i, j]mn =

{

0, i 6= j;
G[i, j]mn , else

,

hν(G)[i, j]mn =

{

0, i = j,m 6= n;
G[i, j]mn , else

.

Based on (15), we define a surrogate objectiveg(G,G(n))
at thenth iteration as:

g(G,G(n)) ≡
1

2
‖G− hη(G

(n))‖2F + (1− α)‖G− hµ(G
(n))‖2F

+α‖G− hν(G
(n))‖2F ,
(16)

where G(n) = D′A(n)′A(n)D is the Gram matrix of the
equivalent dictionary from the previous iteration. In Appendix
B, we prove thatg(G,G(n)) satisfies the conditions of a surro-
gate objective for the bound-optimization method. Therefore,
iteratively minimizingg(G,G(n)) is guaranteed to converge to
the minimum of the original objectivef(G), i.e., solve (14).
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The following proposition describes the closed form solu-
tion to minimizingg(G,G(n)) at each iteration.

Proposition 1: The functiong(G,G(n)) is minimized by
choosing

A(n+1) = ∆
1/2
M V ′

MΛ−1/2U ′,

whereUΛU ′ is the eigenvalue decomposition ofDD′, ∆M

andVM are the topM eigenvalues and the correspondingM
eigenvectors ofΛ−1/2U ′Dht(G

(n))D′UΛ−1/2, and:

ht(·) ≡
2

3

(

1

2
hη(·) + (1− α)hµ(·) + αhν(·)

)

. (17)

Proof: See Appendix B.
A summary of the proposed WCM algorithm is given below.

Algorithm 1 Weighted Coherence Minimization
Task: Solve for a given block-sparsifying dictionaryDN×K :

A = argmin
A

1

2
η + (1− α)µt

B + ανt,

whereA ∈ RM×N .
Initialization: Calculate the eigenvalue decomposition of
DD′ = UΛU ′. SetA(0) as the outcome of (4), i.e.,A(0) =
[IM 0]Λ−1/2U ′, andn = 0.
Repeat until convergence:

1) SetG(n) = D′A(n)′A(n)D.
2) Calculateht(G

(n)) as in (17).
3) Find the topM eigenvalues∆M and the corresponding

M eigenvectorsVM of Λ−1/2U ′Dht(G
(n))D′UΛ−1/2.

4) SetA(n+1) = ∆
1/2
M V ′

MΛ−1/2U ′.
5) n = n+ 1.

V. EXPERIMENTS

In this section, we evaluate the contribution of the proposed
sensing matrix design framework empirically. We compare
the recovery and classification abilities of BOMP [22], [23]
when using sensing matrices designed by our methods to the
outcome of (4), which will be referred to as “Duarte-Sapiro”
(DS) [8].

For each simulation, we repeat the following procedure100
times. We randomly generate a dictionaryDN×K with nor-
mally distributed entries and normalize its columns. In order
to evaluate WCM on structured dictionaries as well, we repeat
the simulations using a dictionary containingN randomly
selected rows of theK×K Discrete Cosine Transform (DCT)
matrix. The dictionary is divided intoK/s blocks of sizes.
We then generateL = 1000 test signalsX of dimensionK
that havek-block-sparse representationsΘ with respect toD.
The generating blocks are chosen randomly and independently
and the coefficients are i.i.d. uniformly distributed.AM×N is
initialized as the outcome of DS. We findA using the WCM
algorithm, and calculate the equivalent dictionaryE = AD
and the measurementsY = AX . Next, we obtain the block-
sparsest representations of the measurements,Θ̂, by applying
BOMP with a fixed number ofk nonzero blocks.

We use two measures to evaluate the success of the simu-
lations based on their outputsA and Θ̂:

• The percentage of recognized generating subspaces ofX

(i.e., successful classification):r = ‖Θ̂⊙Θ‖0

Lks
where⊙ denotes element-wise multiplication.

• The normalized representation errore = ‖X−DΘ̂‖F

‖X‖F

To evaluate the performance of the WCM algorithm as a
function ofα, we chooses = 3, N = 60 andK = 2N = 120.
We repeat the experiment for both types of dictionaries, and
for k = 1 (Fig. 5(a),5(b)),k = 2 (Fig. 6(a),6(b)) andk = 3
(Fig. 7(a),7(b)) nonzero blocks, with respectivelyM = 6,
M = 14 andM = 20 measurements. To show that the results
remain consistent for higher values ofk, we add an experiment
with k = 6, M = 35, N = 180 and K = 2N = 360
(Fig. 8(a),8(b)). We compare the obtained results to randomly
set sensing matrices and to the outputs of DS [8], based on
the normalized representation errore, the classification success
r, and the ratio between the total sub-block coherence and
the total inter-block coherenceνt/µt

B. We observe that WCM
and DS coincide atα = 0.5 for all the three measures, as
expected. Note that forα < 0.5 we get thatνt/µt

B is high,
e is high andr is low. On the other hand, whenα > 0.5,
i.e., when giving more weight toνt and less toµt

B, the signal
reconstruction as well as the signal classification are improved
compared to DS. While the improvement fork = 1 is more
significant, it is maintained for higher values ofk as well.
Remarkably, for structured dictionaries and for higher values
of k, we see thatα < 0.5 leads to an improvement ofr.
However,e is compromised in this case. We can conclude that
when designing sensing matrices for block sparse decoding,
the best results are obtained by choosingα close enough to
1. In other words, the best recovery results are obtained when
the equivalent dictionary has nearly orthonormal blocks. This
holds for dictionaries containing normally distributed entries
as well as for dictionaries containing randomly selected rows
of the DCT matrix. As was the case in Fig. 3(b), we observed
empirically that for α > 0.5, every local minimum is a
global minimum as well. This means that the WCM algorithm
converges to a global solution of (14) whenα > 0.5, for all the
experiments presented in this section. We emphasize however,
that this may not be the case for other sets of parameters.

Fig. 9(a) and Fig. 9(b) show that when using WCM with
α = 0.99 on dictionaries with normally distributed entries and
on structured dictionaries, the improvement in signal recovery
using is maintained for a wide range ofK, starting from square
dictionaries, i.e.K = N , to highly overcomplete dictionaries.
For this experiment, we choses = 3, N = 60, k = 2 and
M = 14. We note that for both types of dictionaries, the
improvement of WCM over DS increases as the dictionary
becomes more overcomplete.

Finally, we show that WCM improves the results of block-
sparse decoding for dictionaries with blocks of varying sizes
as well. The generated dictionaries contain15 blocks of size
4 and20 blocks of size3, with N = 60 andK = 2N = 120.
In this example, we setk = 2 andM = 14. The results are
shown as a function ofα in Fig. 10(a) for dictionaries with
normally distributed entries and in Fig. 10(b) for structured
dictionaries.
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Fig. 5. Simulation results of sensing matrix design using the WCM algorithm
with k = 1 and M = 6. The graphs show the normalized representation
error e, the classification successr, and the ratio between the total sub-block
coherence and the total inter-block coherenceνt/µt

B
as a function ofα. In

(a) the dictionary contains normally distributed entries,and in (b) randomly
selected rows of the DCT matrix.
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Fig. 6. Simulation results of sensing matrix design using the WCM algorithm
with k = 2 andM = 14. The graphs show the normalized representation
error e, the classification successr, and the ratio between the total sub-block
coherence and the total inter-block coherenceνt/µt

B
as a function ofα. In

(a) the dictionary contains normally distributed entries,and in (b) randomly
selected rows of the DCT matrix.
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Fig. 7. Simulation results of sensing matrix design using the WCM algorithm
with k = 3 andM = 20. The graphs show the normalized representation
error e, the classification successr, and the ratio between the total sub-block
coherence and the total inter-block coherenceνt/µt

B
as a function ofα. In

(a) the dictionary contains normally distributed entries,and in (b) randomly
selected rows of the DCT matrix.

0.2 0.4 0.6 0.8
45

50

55

60

65

α

r

WCM
DS
Random

0.2 0.4 0.6 0.8

0.65

0.7

0.75

0.8

0.85

0.9

0.95

α

e

0.2 0.4 0.6 0.8
10

−15

10
−10

10
−5

10
0

α

ν dt /µ
dt

(a)

0.2 0.4 0.6 0.8
50

55

60

65

70

α

r

WCM
DS
Random

0.2 0.4 0.6 0.8
0.7

0.75

0.8

0.85

0.9

0.95

α

e

0.2 0.4 0.6 0.8
10

−15

10
−10

10
−5

10
0

α

ν dt /µ
dt

(b)

Fig. 8. Simulation results of sensing matrix design using the WCM algorithm
with k = 6 andM = 35. The graphs show the normalized representation
error e, the classification successr, and the ratio between the total sub-block
coherence and the total inter-block coherenceνt/µt

B
as a function ofα. In

(a) the dictionary contains normally distributed entries,and in (b) randomly
selected rows of the DCT matrix.
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Fig. 9. Simulation results of sensing matrix design using the WCM algorithm
with k = 2 andM = 14. The graphs show the normalized representation
errore and the classification successr as a function ofK. In (a) the dictionary
contains normally distributed entries, and in (b) randomlyselected rows of
the DCT matrix.

0.2 0.4 0.6 0.8
55

60

65

70

75

80

α

r

WCM
DS
Random

0.2 0.4 0.6 0.8
0.4

0.5

0.6

0.7

0.8

0.9

α

e

0.2 0.4 0.6 0.8
10

−10

10
−5

10
0

α

ν dt /µ
dt

(a)

0.2 0.4 0.6 0.8
55

60

65

70

75

80

α

r

WCM
DS
Random

0.2 0.4 0.6 0.8
0.5

0.6

0.7

0.8

0.9

α

e

0.2 0.4 0.6 0.8
10

−15

10
−10

10
−5

10
0

α

ν dt /µ
dt

(b)

Fig. 10. Simulation results of sensing matrix design using the WCM
algorithm on a dictionary containing15 blocks of size4 and20 blocks of size
3, with k = 2 andM = 14. The graphs show the normalized representation
error e, the classification successr, and the ratio between the total sub-block
coherence and the total inter-block coherenceνt/µt

B
as a function ofα. In

(a) the dictionary contains normally distributed entries,and in (b) randomly
selected rows of the DCT matrix.

VI. CONCLUSIONS

In this paper, we proposed a framework for the design of a
sensing matrix, assuming that a block-sparsifying dictionary is
provided. We minimize a weighted sum of the total inter-block
coherence and the total sub-block coherence, while attempting
to keep the atoms in the equivalent dictionary as normalizedas
possible (see (14)). This objective can be seen as an intuitive
extension of (4) to the case of blocks.

While it might be possible to derive a closed form solution
to (14), we have presented the Weighted Coherence Minimiza-
tion algorithm, an elegant iterative solution which is based on
the bound-optimization method. In this method, the original
objective is replaced with an easier to solve surrogate objective
in each step. This algorithm eventually converges to a local
solution of (14).

Simulations have shown that the best results are ob-
tained when minimizing mostly the total sub-block coherence.
This leads to equivalent dictionaries with nearly orthonormal
blocks, at the price of a slightly increased total inter-block
coherence. The obtained sensing matrix outperforms the one
obtained when using the DS algorithm [8] to solve (4). This
improvement manifests itself in lower signal reconstruction
errors and higher rates of successful signal classification.
When giving equal weight to the total inter-block coherence
and to the total sub-block coherence, the results are identical to
solving (4). Moreover, both objectives coincide for this specific
choice ofα, which ignores the existence of a block structure
in the sparse representations of the signal data.

APPENDIX A
PROOF OF CONVERGENCE

The surrogate functiong(G,G(n)) has been chosen in such
a way as to bound the original objectivef(G) from above for
everyG, and to coincide atG = G(n). Minimizing g(G,G(n))
will then necessarily decrease the value off(G):

min
G

g(G,G(n)) ≤ g(G(n), G(n)) = f(G(n)),

f(G(n+1)) ≤ g(G(n+1), G(n)) = min
G

g(G,G(n)).

Formally, according to [25], the sequence of solutions gener-
ated by iteratively solving

G(n+1) = argmin
G

g(G,G(n)) (18)

is guaranteed to converge to a local minimum of the origi-
nal objectivef(G) when the surrogate objectiveg(G,G(n))
satisfies the following three constraints:

1) Equality at G = G(n):

g(G(n), G(n)) = f(G(n)).

2) Upper-bounding the original function:

g(G,G(n)) ≥ f(G), ∀G.

3) Equal gradient at G = G(n):

∇g(G,G(n))|G=G(n) = ∇f(G)|G=G(n) .

We next prove that the three conditions hold.
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Proof: Equality at G = G(n): This follows from the
definition of g(G,G(n)).

Upper-bounding the original function: Let us rewrite both
functions g(G,G(n)) and f(G) using the definition of the
Frobenius norm:

g(G,G(n)) =
∑

i,j

∑

m,n

[

1

2
((G− hη(G

(n)))[i, j]mn )2

+ (1− α)((G − hµ(G
(n)))[i, j]mn )2

+α((G− hν(G
(n)))[i, j]mn )2

]

,

and

f(G) =
∑

i,j

∑

m,n

[

1

2
(uη(G)[i, j]mn )2 + (1− α)(uµ(G)[i, j]mn )2

+α(uν(G)[i, j]mn )2
]

.

The following observations prove that each of the terms in
g(G,G(n)) is larger than or equal to its counterpart inf(G),
and thereforeg(G,G(n)) ≥ f(G):

uη(G)[i, j]mn =

{

G[i, j]mn − 1, i = j,m = n;
0, else.

(G− hη(G
(n)))[i, j]mn =

{

G[i, j]mn − 1, i = j,m = n;
(G−G(n))[i, j]mn , else.

uµ(G)[i, j]mn =

{

G[i, j]mn , i 6= j;
0, else.

(G− hµ(G
(n)))[i, j]mn =

{

G[i, j]mn , i 6= j;
(G−G(n))[i, j]mn , else.

uν(G)[i, j]mn =

{

G[i, j]mn , i = j,m 6= n;
0, else.

(G− hν(G
(n)))[i, j]mn =

{

G[i, j]mn , i = j,m 6= n;
(G−G(n))[i, j]mn , else.

Equal gradient at G = G(n): We calculate the gradient of
g(G,G(n)) andf(G):

∇g(G,G(n)) =

2

[

1

2
(G− hη(G

(n))) + (1− α)(G− hµ(G
(n)))

+α(G− hν(G
(n)))

]

,

∇f(G) = 2

[

1

2
uη(G) + (1− α)uµ(G) + αuν(G)

]

.

When substitutingG = G(n) we obtain:

∇g(G,G(n))|G=G(n) = ∇f(G)|G=G(n)

= 2(
1

2
uη(G

(n)) + (1− α)uµ(G
(n)) + αuν(G

(n))).

Therefore, the gradients of both objectives coincide atG =
G(n). This completes the convergence proof.

APPENDIX B
PROOF OFPROPOSITION1

Proof: In order to minimizeg(G,G(n)), we rewrite the
problem in an alternative form:

min
A

g(G, ·) =

min
A

tr

(

3

2
G′G− 2G′

[

1

2
hη(·) + (1− α)hµ(·) + αhν(·)

])

=min
A

tr(E′EE′E − 2E′Eht(·))

=min
A

tr(EE′EE′ − 2Eht(·)E
′)

=min
A

tr(ADD′A′ADD′A′ − 2ADht(·)D
′A′), (19)

whereht(·) is defined in (17). LetUΛU ′ be the eigenvalue
decomposition ofDD′ and defineΓM×N = AUΛ1/2. Substi-
tuting into (19) yields:

min
A

g(G, ·) =

min
A

tr(ΓΓ′ΓΓ′ − 2ΓΛ−1/2U ′Dht(·)D
′UΛ−1/2Γ′)

=min
A

‖Γ′Γ− h̃t(·)‖
2
F , (20)

whereh̃t(·) ≡ Λ−1/2U ′Dht(·)D
′UΛ−1/2. According to (20),

the surrogate objectiveg(G,G(n)) can be minimized in closed
form by finding the topM components of̃ht(G

(n)). Let
∆M be the topM eigenvalues of̃ht(G

(n)) and VM the
correspondingM eigenvectors. Then, (20) is solved by setting
Γ = ∆

1/2
M V ′

M . Note that this solution is not unique, sinceΓ
can be multiplied on the left by any unitary matrix. Finally,
the optimal sensing matrix is given byA(n+1) = ΓΛ−1/2U ′ =

∆
1/2
M V ′

MΛ−1/2U ′. The resulting Gram matrixG(n+1) is not
influenced by the multiplication ofA(n+1) on the left by a
unitary matrix. Therefore, the WCM algorithm is not affected
by the choice ofA(n+1).
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